Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Diagn Microbiol Infect Dis ; 109(1): 116246, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452556

RESUMO

Providencia rettgeri, belonging to the genus Providencia, had gained significant interest due to its increasing prevalence as a common pathogen responsible for healthcare-associated infections in hospitals. P. rettgeri isolates producing carbapenemases have been reported to reduce the efficiency of carbapenems in clinical antimicrobial therapy. However, coexistence with other resistance determinants is rarely reported. The goal of this study was the molecular characterization of carbapenemase-producing Providencia spp. clinical isolates. Among 23 Providencia spp. resistant to imipenem, 21 were positive to blaNDM-1; one positive to blaNDM-1 and blaOXA-58 like; and one isolate co-producing blaIMP-27, blaOXA-24/40 like, and blaOXA-58 like were identified. We observed a low clonal relationship, and the incompatibility groups Col3M and ColRNAI were identified in the plasmid harboring blaNDM-1. We report for the first time a P. rettgeri strain co-producing blaIMP-27, blaOXA-24-like, and blaOXA-58 like. The analysis of these resistance mechanisms in carbapenemase co-producing clinical isolates reflects the increased resistance.


Assuntos
Antibacterianos , Providencia , Humanos , Antibacterianos/farmacologia , Providencia/genética , México/epidemiologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , Proteínas de Bactérias/genética
2.
Sci Rep ; 14(1): 5876, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467675

RESUMO

Here, we conducted a comprehensive analysis of 356 Klebsiella pneumoniae species complex (KpSC) isolates that were classified as classical (cl), presumptive hypervirulent (p-hv) and hypermucoviscous-like (hmv-like). Overall, K. pneumoniae (82.3%), K. variicola (2.5%) and K. quasipneumoniae (2.5%) were identified. These isolates comprised 321 cl-KpSC, 7 p-hv-KpSC and 18 hmv-like-KpSC. A large proportion of cl-KpSC isolates were extended-spectrum-ß-lactamases (ESBLs)-producers (64.4%) and 3.4% of isolates were colistin-resistant carrying carbapenemase and ESBL genes. All p-hv-KpSC showed an antibiotic susceptible phenotype and hmv-like isolates were found to be ESBL-producers (8/18). Assays for capsule production and capsule-dependent virulence phenotypes and whole-genome sequencing (WGS) were performed in a subset of isolates. Capsule amount differed in all p-hv strains and hmv-like produced higher capsule amounts than cl strains; these variations had important implications in phagocytosis and virulence. Murine sepsis model showed that most cl strains were nonlethal and the hmv-like caused 100% mortality with 3 × 108 CFUs. Unexpectedly, 3/7 (42.9%) of p-hv strains required 108 CFUs to cause 100% mortality (atypical hypervirulent), and 4/7 (57.1%) strains were considered truly hypervirulent (hv). Genomic analyses confirmed the diverse population, including isolates belonging to hv clonal groups (CG) CG23, CG86, CG380 and CG25 (this corresponded to the ST3999 a novel hv clone) and MDR clones such as CG258 and CG147 (ST392) among others. We noted that the hmv-like and hv-ST3999 isolates showed a close phylogenetic relationship with cl-MDR K. pneumoniae. The information collected here is important to understand the evolution of clinically important phenotypes such as hypervirulent and ESBL-producing-hypermucoviscous-like amongst the KpSC in Mexican healthcare settings. Likewise, this study shows that mgrB inactivation is the main mechanism of colistin resistance in K. pneumoniae isolates from Mexico.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Camundongos , Klebsiella , Colistina , Filogenia , beta-Lactamases/genética , Antibacterianos/farmacologia , Fenótipo , Testes de Sensibilidade Microbiana
3.
Braz J Microbiol ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978118

RESUMO

The spread of ESBL-producing Escherichia coli has constantly increased in both clinical and community infections. Actually, the main ESBL reported is the CTX-M family, which is widely disseminated between the Enterobacteriaceae family. The epidemiology of the CTX-M family shows the CTX-M-15 variant dominating worldwide, followed by CTX-M-14 and CTX-M-27. The specific ESBL-producing E. coli clones included mainly the sequence types ST131, ST405, and ST648. In this report, we present the molecular characterization of ESBL-producing E. coli clinical isolates from eight hospitals in Mexico. From a collection of 66 isolates, 39 (59%) were identified as blaCTX-M-14 and blaCTX-M-27 belonging to the group CTX-M-9. We identified 25 (38%) isolates, producing blaCTX-M-28 belonging to the group CTX-M-1. blaCTX-M-2 and blaTEM-55 were identified in one isolate, respectively. Fourteen isolates (21%) were positive for blaCTX-M-14 (13%) and blaCTX-M-28 (7.3%) that were selected for further analyses; the antimicrobial susceptibility showed resistance to ampicillin (> 256 µg/mL), cefotaxime (> 256 µg/mL), cefepime (> 64 µg/mL), and ceftazidime (16 µg/mL). The ResFinder analysis showed the presence of the antimicrobial resistance genes aacA4, aadA5, aac(3)lla, sul1, dfrA17, tet(A), cmlA1, and blaTEM-1B. PlasmidFinder analysis identified in all the isolates the replicons IncFIB, which were confirmed by PCR replicon typing. The MLST analysis identified isolates belonging to ST131, ST167, ST405, and ST648. The ISEcp1B genetic element was found at 250 pb upstream of blaCTX-M-14 and flanked by the IS903 genetic element at 35 pb downstream. The IS1380-like element ISEc9 family transposase was identified at 250 pb upstream of blaCTX-M-14 and flanked downstream by the IS5/IS1182 at 80 pb. Our study highlights the significant prevalence of CTX-M-14 and CTX-M-28 enzymes as the second-most common ESBL-producing E. coli among isolates in Mexican hospitals. The identification of specific sequence types in different regions provides valuable insights into the correlation between ESBL and E. coli strains. This contribution to understanding their epidemiology and potential transmission routes is crucial for developing effective strategies to mitigate the spread of ESBL-producing E. coli in healthcare settings.

4.
Braz J Microbiol ; 54(4): 2791-2797, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37702924

RESUMO

Antimicrobial resistance is a major global public health problem, with fluoroquinolone-resistant strains of Escherichia coli posing a significant threat. This study examines the genetic characterization of ESBL-producing E. coli isolates in Mexican hospitals, which are resistant to both cephalosporins and fluoroquinolones. A total of 23 ESBL-producing E. coli isolates were found to be positive for the qepA gene, which confers resistance to fluoroquinolones. These isolates exhibited drug resistance phenotypes and belonged to specific sequence types and phylogenetic groups. The genetic context of the qepA gene was identified in a novel genetic context flanked by IS26 sequences. Mating experiments showed the co-transfer of qepA1 and chrA determinants alongside blaCTX-M-15 genes, emphasizing the potential for these genetic structures to spread among Enterobacterales. The emergence of multidrug-resistant Gram-negative bacteria carrying these resistance genes is a significant clinical concern for public healthcare systems.


Assuntos
Infecções por Escherichia coli , Fluoroquinolonas , Humanos , Fluoroquinolonas/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Filogenia , México , Infecções por Escherichia coli/microbiologia , Plasmídeos/genética , beta-Lactamases/genética
5.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37259397

RESUMO

As the rate of discovery of new antibacterial compounds for multidrug-resistant bacteria is declining, there is an urge for the search for molecules that could revert this tendency. Acinetobacter baumannii has emerged as a highly virulent Gram-negative bacterium that has acquired multiple resistance mechanisms against antibiotics and is considered of critical priority. In this work, we developed a quantitative structure-property relationship (QSPR) model with 592 compounds for the identification of structural parameters related to their property as antibacterial agents against A. baumannii. QSPR mathematical validation (R2 = 70.27, RN = -0.008, a(R2) = 0.014, and δK = 0.021) and its prediction ability (Q2LMO= 67.89, Q2EXT = 67.75, a(Q2) = -0.068, δQ = 0.0, rm2¯ = 0.229, and Δrm2 = 0.522) were obtained with different statistical parameters; additional validation was done using three sets of external molecules (R2 = 72.89, 71.64 and 71.56). We used the QSPR model to perform a virtual screening on the BIOFACQUIM natural product database. From this screening, our model showed that molecules 32 to 35 and 54 to 68, isolated from different extracts of plants of the Ipomoea sp., are potential antibacterials against A. baumannii. Furthermore, biological assays showed that molecules 56 and 60 to 64 have a wide antibacterial activity against clinically isolated strains of A. baumannii, as well as other multidrug-resistant bacteria, including Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa. Finally, we propose 60 as a potential lead compound due to its broad-spectrum activity and its structural simplicity. Therefore, our QSPR model can be used as a tool for the investigation and search for new antibacterial compounds against A. baumannii.

6.
Microb Drug Resist ; 29(6): 239-248, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36595348

RESUMO

In this study, we report the carbapenemase-encoding genes and colistin resistance in Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa in the second year of the COVID-19 pandemic. Clinical isolates included carbapenem-resistant K. pneumoniae, carbapenem-resistant E. coli, carbapenem-resistant A. baumannii, and carbapenem-resistant P. aeruginosa. Carbapenemase-encoding genes were detected by PCR. Carbapenem-resistant K. pneumoniae and carbapenem-resistant E. coli isolates were analyzed using the Rapid Polymyxin NP assay. mcr genes were screened by PCR. Pulsed-field gel electrophoresis and whole-genome sequencing were performed on representative isolates. A total of 80 carbapenem-resistant E. coli, 103 carbapenem-resistant K. pneumoniae, 284 carbapenem-resistant A. baumannii, and 129 carbapenem-resistant P. aeruginosa isolates were recovered. All carbapenem-resistant E. coli and carbapenem-resistant K. pneumoniae isolates were included for further analysis. A selection of carbapenem-resistant A. baumannii and carbapenem-resistant P. aeruginosa strains was further analyzed (86 carbapenem-resistant A. baumannii and 82 carbapenem-resistant P. aeruginosa). Among carbapenem-resistant K. pneumoniae and carbapenem-resistant E. coli isolates, the most frequent gene was blaNDM (86/103 [83.5%] and 72/80 [90%], respectively). For carbapenem-resistant A. baumannii, the most frequently detected gene was blaOXA-40 (52/86, 60.5%), and for carbapenem-resistant P. aeruginosa, was blaVIM (19/82, 23.2%). For carbapenem-resistant A. baumannii, five indistinguishable pulsotypes were detected. Circulation of K. pneumoniae New Delhi metallo-ß-lactamase (NDM) and E. coli NDM was detected in Mexico. High virulence sequence types (STs), such as K. pneumoniae ST307, E. coli ST167, P. aeruginosa ST111, and A. baumannii ST2, were detected. Among K. pneumoniae isolates, 18/101 (17.8%) were positive for the Polymyxin NP test (two, 11.0% positive for the mcr-1 gene, and one, 5.6% with disruption of the mgrB gene). All E. coli isolates were negative for the Polymyxin NP test. In conclusion, K. pneumoniae NDM and E. coli NDM were detected in Mexico, with the circulation of highly virulent STs. These results are relevant in clinical practice to guide antibiotic therapies considering the molecular mechanisms of resistance to carbapenems.


Assuntos
COVID-19 , Colistina , Humanos , Colistina/farmacologia , Antibacterianos/farmacologia , Escherichia coli/genética , México/epidemiologia , Pandemias , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , COVID-19/epidemiologia , beta-Lactamases/genética , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Bactérias Gram-Negativas , Klebsiella pneumoniae , Pseudomonas aeruginosa/genética
8.
Biophys J ; 121(16): 3034-3048, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842753

RESUMO

Ascaphins are cationic antimicrobial peptides that have been shown to have potential in the treatment of infectious diseases caused by multidrug-resistant pathogens (MDR). However, to date, their principal molecular target and mechanism of action are unknown. Results from peptide prediction software and molecular dynamics simulations confirmed that ascaphin-8 is an alpha-helical peptide. For the first time, the peptide was described as membranotrophic using biophysical approaches including calcein liposome leakage, Laurdan general polarization, and dynamic light scattering. Ascaphin-8's activity and selectivity were modulated by rearranging the spatial distribution of lysine (Var-K5), aspartic acid (Var-D4) residues, or substitution of phenylalanine with tyrosine (Var-Y). The parental peptide and its variants presented high affinity toward the bacterial membrane model (≤2 µM), but lost activity in sterol-enriched membranes (mammal and fungal models, with cholesterol and ergosterol, respectively). The peptide-induced pore size was estimated to be >20 nm in the bacterial model, with no difference among peptides. The same pattern was observed in membrane fluidity (general polarization) assays, where all peptides reduced membrane fluidity of the bacterial model but not in the models containing sterols. The peptides also showed high activity toward MDR bacteria. Moreover, peptide sensitivity of the artificial membrane models compared with pathogenic bacterial isolates were in good agreement.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Fluidez de Membrana , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias , Colesterol/química , Mamíferos , Testes de Sensibilidade Microbiana , Esteróis/química
9.
Antibiotics (Basel) ; 11(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35203760

RESUMO

The use of colistin in food-producing animals favors the emergence and spread of colistin-resistant strains. Here, we investigated the occurrence and molecular mechanisms of colistin resistance among E. coli isolates from a Mexican piglet farm. A collection of 175 cephalosporin-resistant colonies from swine fecal samples were recovered. The colistin resistance phenotype was identified by rapid polymyxin test and the mcr-type genes were screened by PCR. We assessed the colistin-resistant strains by antimicrobial susceptibility test, pulse-field gel electrophoresis, plasmid profile, and mating experiments. Whole-Genome Sequencing data was used to explore the resistome, virulome, and mobilome of colistin-resistant strains. A total of four colistin-resistant E. coli were identified from the cefotaxime-resistant colonies. All harbored the plasmid-borne mcr-1 gene, which was located on conjugative 170-kb IncHI-2 plasmid co-carrying ESBLs genes. Thus, high antimicrobial resistance rates were observed for several antibiotic families. In the RC2-007 strain, the mcr-1 gene was located as part of a prophage carried on non-conjugative 100-kb-plasmid, which upon being transformed into K. variicola strain increased the polymyxin resistance 2-fold. The genomic analysis showed a broad resistome and virulome. Our findings suggest that colistin resistance followed independent acquisition pathways as clonal and non-genetically related mcr-1-harboring strains were identified. These E. coli isolates represent a reservoir of antibiotic resistance and virulence genes in animals for human consumption which could be potentially propagated into other interfaces.

10.
Arch Microbiol ; 204(1): 73, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951665

RESUMO

Accurate recognition of the closely related species Klebsiella pneumoniae, Klebsiella quasipneumoniae and Klebsiella variicola by phenotypic, biochemical and automated tests is notoriously unreliable in hospitals' diagnostic laboratories. A comparative genomics approach was conducted for the correct differentiation of the main bacterial species in the K. pneumoniae complex. Analysis of the deduced proteomes of 87 unique genomes of the Klebsiella in public databases, was used for the identification of unique protein family members. This allowed the design of a multiplex-PCR assay for the correct differentiation of these three species from different origins. This system allowed us to determine the prevalence of K. pneumoniae, K. quasipneumoniae and K. variicola among a collection of 552 clinical isolates. Of these, 87.3% (482/552) isolates corresponded to K. pneumoniae, 6.7% (33/552) to K. quasipneumoniae and 5.9% (33/552) to K. variicola. The multiplex-PCR results showed a 100% accuracy for the correct identification of the three species evaluated, which was validated with rpoB phylogenetic sequence analysis.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella/genética , Klebsiella pneumoniae/genética , Reação em Cadeia da Polimerase Multiplex , Filogenia
11.
J Infect Dev Ctries ; 15(8): 1167-1172, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34516425

RESUMO

INTRODUCTION: Acetic acid (AA) has been commonly used in medicine as an antiseptic agent for the past 6000 years. This study evaluated the antibacterial effect of AA during an outbreak in an intensive care unit (ICU) facility in Baja California Sur, México. METHODOLOGY: Thirty-five environmental samples were collected, subsequently, disinfection with AA (4%) was performed, and two days later the same areas were sampled inside the ICU facility. Carbapenem-resistant A. baumannii (CRAB) was detected with loop-mediated isothermal amplification assay (Garciglia-Mercado et al. companion paper), targeting blaOXA-23-like, blaOXA-24-like, blaOXA-51-like, blaOXA-58-like, blaIMP and blaVIM genes. CRAB isolates before and after disinfection were compared by PFGE. RESULTS: Eighteen (54.5%) and five (14.3%) of thirty-five environmental samples were identified as Acinetobacter baumannii before and after disinfection, respectively, showing a significant decrease of 85.7% (p < 0.05) both by Loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR). Furthermore, the presence of blaOXA-23-like and blaOXA-58-like genes significantly decreased (p < 0.05) both by LAMP and PCR methods. PFGE genotype showed high similarity among CRAB isolates before and after disinfection, suggesting wide clonal dissemination in the ICU facility. CONCLUSIONS: This study demonstrated the novel application of AA with the LAMP assays developed for detecting CRAB. AA promises to be a cheap and efficacious disinfectant alternative to both developed and especially developing countries, preventing the spread of this organism in the environment and to other susceptible patients in health care settings.


Assuntos
Ácido Acético/uso terapêutico , Infecções por Acinetobacter/microbiologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Ácido Acético/farmacologia , Acinetobacter baumannii/isolamento & purificação , Antibacterianos/farmacologia , Humanos , Unidades de Terapia Intensiva , México , Testes de Sensibilidade Microbiana , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico
12.
Microbiol Resour Announc ; 10(26): e0032921, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34197204

RESUMO

Klebsiella variicola F2R9 was isolated from banana root, and its sequence has been deposited as ATCC BAA-830. It corresponds to sequence type 11 (ST11) and KL16 and contains no identifiable plasmids. The genome showed few antimicrobial resistance and virulence genes and several plant association genes. The strain showed susceptibility to most antimicrobials and avirulent behavior.

13.
PLoS One ; 16(3): e0248614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33730101

RESUMO

AIM: This report presents phenotypic and genetic data on the prevalence and characteristics of extended-spectrum ß-lactamases (ESBLs) and representative carbapenemases-producing Gram-negative species in Mexico. MATERIAL AND METHODS: A total of 52 centers participated, 43 hospital-based laboratories and 9 external laboratories. The distribution of antimicrobial resistance data for Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae complex, Acinetobacter baumannii complex, and Pseudomonas aeruginosa in selected clinical specimens from January 1 to March 31, 2020 was analyzed using the WHONET 5.6 platform. The following clinical isolates recovered from selected specimens were included: carbapenem-resistant Enterobacteriaceae, ESBL or carbapenem-resistant E. coli, and K. pneumoniae, carbapenem-resistant A. baumannii complex, and P. aeruginosa. Strains were genotyped to detect ESBL and/or carbapenemase-encoding genes. RESULTS: Among blood isolates, A. baumannii complex showed more than 68% resistance for all antibiotics tested, and among Enterobacteria, E. cloacae complex showed higher resistance to carbapenems. A. baumannii complex showed a higher resistance pattern for respiratory specimens, with only amikacin having a resistance lower than 70%. Among K. pneumoniae isolates, blaTEM, blaSHV, and blaCTX were detected in 68.79%, 72.3%, and 91.9% of isolates, respectively. Among E. coli isolates, blaTEM, blaSHV, and blaCTX were detected in 20.8%, 4.53%, and 85.7% isolates, respectively. For both species, the most frequent genotype was blaCTX-M-15. Among Enterobacteriaceae, the most frequently detected carbapenemase-encoding gene was blaNDM-1 (81.5%), followed by blaOXA-232 (14.8%) and blaoxa-181(7.4%), in A. baumannii was blaOXA-24 (76%) and in P. aeruginosa, was blaIMP (25.3%), followed by blaGES and blaVIM (13.1% each). CONCLUSION: Our study reports that NDM-1 is the most frequent carbapenemase-encoding gene in Mexico in Enterobacteriaceae with the circulation of the oxacillinase genes 181 and 232. KPC, in contrast to other countries in Latin America and the USA, is a rare occurrence. Additionally, a high circulation of ESBL blaCTX-M-15 exists in both E. coli and K. pneumoniae.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Resistência beta-Lactâmica/genética , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Carbapenêmicos/uso terapêutico , Genes Bacterianos , Genótipo , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , México/epidemiologia , Testes de Sensibilidade Microbiana , Fenótipo , beta-Lactamases/genética
14.
BMC Infect Dis ; 21(1): 235, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33639886

RESUMO

BACKGROUND: This study aimed to determine the epidemiological, microbiological, and molecular characteristics of an outbreak of carbapenem-resistant Leclercia adecarboxylata in three hospitals associated with the unintended use of contaminated total parental nutrition (TPN). METHODS: For 10 days, 25 patients who received intravenous TPN from the same batch of a formula developed sepsis and had blood cultures positive for L. adecarboxylata. Antimicrobial susceptibility and carbapenemase production were performed in 31 isolates, including one from an unopened bottle of TPN. Carbapenemase-encoding genes, extended-spectrum ß-lactamase-encoding genes were screened by PCR, and plasmid profiles were determined. Horizontal transfer of carbapenem resistance was performed by solid mating. Clonal diversity was performed by pulsed-field gel electrophoresis. The resistome was explored by whole-genome sequencing on two selected strains, and comparative genomics was performed using Roary. RESULTS: All 31 isolates were resistant to aztreonam, cephalosporins, carbapenems, trimethoprim/sulfamethoxazole, and susceptible to gentamicin, tetracycline, and colistin. Lower susceptibility to levofloxacin (51.6%) and ciprofloxacin (22.6%) was observed. All the isolates were carbapenemase producers and positive for blaNDM-1, blaTEM-1B, and blaSHV-12 genes. One main lineage was detected (clone A, 83.9%; A1, 12.9%; A2, 3.2%). The blaNDM-1 gene is embedded in a Tn125-like element. Genome analysis showed genes encoding resistance for aminoglycosides, quinolones, trimethoprim, colistin, phenicols, and sulphonamides and the presence of IncFII (Yp), IncHI2, and IncHI2A incompatibility groups. Comparative genomics showed a major phylogenetic relationship among L. adecarboxylata I1 and USDA-ARS-USMARC-60222 genomes, followed by our two selected strains. CONCLUSION: We present epidemiological, microbiological, and molecular evidence of an outbreak of carbapenem-resistant L. adecarboxylata in three hospitals in western Mexico associated with the use of contaminated TPN.


Assuntos
Surtos de Doenças , Infecções por Enterobacteriaceae/etiologia , Enterobacteriaceae/metabolismo , Nutrição Parenteral Total/efeitos adversos , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Bacteriemia/epidemiologia , Bacteriemia/etiologia , Bacteriemia/microbiologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Enterobacteriáceas Resistentes a Carbapenêmicos/metabolismo , Criança , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Genoma Bacteriano/genética , Hospitais , Humanos , México/epidemiologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , beta-Lactamases/genética
15.
Braz J Microbiol ; 52(2): 1029-1036, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33580865

RESUMO

Bovine mastitis, an inflammation of the mammary gland of dairy cattle, is the most prevalent disease causing economically important losses, reduced milk production, early culling, veterinary expenses, and higher death rates. Bovine mastitis infections are the main cause for the use of antibiotics; however, the emergence of multidrug-resistant bacteria and the poor or nil response to antibiotics has become a critical global health problem. The goal of this study was the characterization of bacterial infections associated with clinical bovine mastitis. All the isolates were multidrug-resistant and were negative for the production of extended spectrum ß-lactamases. However, all isolates were identified as carbapenemase-producing organisms by the Carba NP test. The carbapenemase identified was the product of the KPC-2 gene. The isolates were identified as Klebsiella pneumoniae and contained virulence genes for fimbriae, lipopolysaccharides, nitrogen starvation genes, and siderophores. Sixty-nine percent of the KPC-2-producing isolates had the same plasmid profile, although the genetic mobilization of resistance by bacterial conjugation was unsuccessful. The carbapenemase corresponded to the plasmid-borne KPC-2 gene identified by Southern blot hybridization. The assay showed a positive signal in the 90 kb (69% of the isolates), 165 kb (31% of the isolates), and 130 kb (6% of the isolates) plasmids. The IncFIIy and IncFIIk replicons were detected among these K. pneumoniae isolates. The PFGE and MLST analysis showed that all of the isolates are comprised by two clones (A and B) belonging to Sequence Type 258. This is the first report of K. pneumoniae producing carbapenemase KPC-2 isolated from bovine mastitis.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Infecções por Klebsiella/veterinária , Klebsiella pneumoniae/isolamento & purificação , Mastite Bovina/microbiologia , beta-Lactamases/metabolismo , Animais , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/enzimologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Bovinos , Farmacorresistência Bacteriana Múltipla , Feminino , Genótipo , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Virulência/genética , beta-Lactamases/genética
16.
J Chemother ; 33(2): 122-127, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33357158

RESUMO

We investigated the phenotypic and molecular characteristics of Extended-Spectrum-ß-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates from four health-care institutions in Hermosillo, Sonora, Mexico. ESBL-producing isolates were collected from February to August 2016. The prevalence of ESBL-producing E. coli and K. pneumoniae was 11.9 and 8.7%, respectively. High dissemination of resistance to ciprofloxacin (88%), trimethoprim/sulfamethoxazole (72%) and aminoglycosides (59%) were detected, as well as susceptibility to meropenem, amikacin and tigecycline. The ESBL found variants were CTX-M-1 (88%) and CTX-M-9 (5%). The plasmid-mediated quinolone resistance (PMQR) gene aac(6´)-Ib-cr was identified in 62% of a representative sample, whereas the qnrB and qnrS genes were detected in 49% of the isolates. PFGE analyses detected many unrelated clones among the hospital or community isolates. A constant programme of epidemiological surveillance is recommended to understand the dynamics of bacterial resistance to both cephalosporin as well as the fluoroquinolone family of antibiotics.


Assuntos
Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , beta-Lactamases/biossíntese , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana Múltipla/fisiologia , Escherichia coli/isolamento & purificação , Humanos , Klebsiella pneumoniae/isolamento & purificação , México , Testes de Sensibilidade Microbiana , Fenótipo
17.
Braz J Microbiol ; 51(4): 2009-2014, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32897511

RESUMO

Using molecular and whole-genome sequencing tools, we investigated colistin-resistant Escherichia coli isolates from wild sea lions. Two unrelated E. coli colistin-resistant isolates, ST8259 and ST4218, were identified, both belonging to the B2 phylogroup and different serotypes. Polymorphisms in PmrA, PmrB, and PhoQ proteins were identified, and the role of PmrB and PhoQ in contributing to colistin resistance was determined by complementation assays. However, the mutations characterized in the present study are not involved in colistin resistance, which have been described in E. coli isolates from clinical settings. Therefore, the acquired mutations in pmrB and phoQ genes in resistance to colistin in bacteria related to marine environment animals are different. This work contributes to the surveillance and characterization of colistin resistance in Escherichia coli obtained from animals from aquatic environments.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Escherichia coli/classificação , Escherichia coli/efeitos dos fármacos , Genoma Bacteriano , Leões-Marinhos/microbiologia , Animais , Animais Selvagens/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Sorogrupo , Sequenciamento Completo do Genoma
18.
Front Microbiol ; 11: 1283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625185

RESUMO

Acinetobacter baumannii is an emergent bacterial pathogen that provokes many types of infections in hospitals around the world. The genome of this organism consists of a chromosome and plasmids. These plasmids vary over a wide size range and many of them have been linked to the acquisition of antibiotic-resistance genes. Our bioinformatic analyses indicate that A. baumannii plasmids belong to a small number of plasmid lineages. The general structure of these lineages seems to be very stable and consists not only of genes involved in plasmid maintenance functions but of gene sets encoding poorly characterized proteins, not obviously linked to survival in the hospital setting, and opening the possibility that they improve the parasitic properties of plasmids. An analysis of genes involved in replication, suggests that members of the same plasmid lineage are part of the same plasmid incompatibility group. The same analysis showed the necessity of classifying the Rep proteins in ten new groups, under the scheme proposed by Bertini et al. (2010). Also, we show that some plasmid lineages have the potential capacity to replicate in many bacterial genera including those embracing human pathogen species, while others seem to replicate only within the limits of the Acinetobacter genus. Moreover, some plasmid lineages are widely distributed along the A. baumannii phylogenetic tree. Despite this, a number of them lack genes involved in conjugation or mobilization functions. Interestingly, only 34.6% of the plasmids analyzed here possess antibiotic resistance genes and most of them belong to fourteen plasmid lineages of the twenty one described here. Gene flux between plasmid lineages appears primarily limited to transposable elements, which sometimes carry antibiotic resistance genes. In most plasmid lineages transposable elements and antibiotic resistance genes are secondary acquisitions. Finally, broad host-range plasmids appear to have played a crucial role.

19.
J Infect Dev Ctries ; 14(5): 494-501, 2020 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-32525836

RESUMO

INTRODUCTION: Carbapenem-resistant A. baumannii (CRAB) represents a public health threat increasing worldwide. We assess the suitability of a loop-mediated isothermal amplification (LAMP) method for on-site screening of CRAB in a hospital facility. METHODOLOGY: A set of six primers were designed for recognizing eight distinct sequences on six targets: blaOXA-23-like, blaOXA-24-like, blaOXA-51-like, blaOXA-58-like, blaIMP, and blaVIM. A LAMP method was developed, optimized and evaluated for the identification of CRAB in thirty-three environmental samples from an outbreak in an Intensive Care Unit (ICU) facility. RESULTS: The sensitivity of the LAMP assay for the detection of A. baumannii was ten-fold higher than the PCR assay (1.0 ng.µL-1). The LAMP assays showed a higher detection rate for CRAB samples and robust diagnosis performance in comparison to a conventional PCR, with clinical sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 100% for blaOXA-23-like, blaOXA-51-like and blaVIM. CONCLUSIONS: The developed LAMP assays are powerful tools that can be useful in on-site screening of CRAB causing local outbreaks in clinics and hospitals facilities where costs and equipment restraints are imperative.


Assuntos
Infecções por Acinetobacter/diagnóstico , Acinetobacter baumannii/isolamento & purificação , Surtos de Doenças , Farmacorresistência Bacteriana , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Infecção Hospitalar/microbiologia , Hospitais/estatística & dados numéricos , Humanos , México , Testes de Sensibilidade Microbiana , Valor Preditivo dos Testes , Sensibilidade e Especificidade
20.
Front Microbiol ; 11: 579612, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391198

RESUMO

Hypermucoviscosity (hmv) is a capsule-associated phenotype usually linked with hypervirulent Klebsiella pneumoniae strains. The key components of this phenotype are the RmpADC proteins contained in non-transmissible plasmids identified and studied in K. pneumoniae. Klebsiella variicola is closely related to K. pneumoniae and recently has been identified as an emergent human pathogen. K. variicola normally contains plasmids, some of them carrying antibiotic resistance and virulence genes. Previously, we described a K. variicola clinical isolate showing an hmv-like phenotype that harbors a 343-kb pKV8917 plasmid. Here, we investigated whether pKV8917 plasmid carried by K. variicola 8917 is linked with the hmv-like phenotype and its contribution to virulence. We found that curing the 343-kb pKV8917 plasmid caused the loss of hmv, a reduction in capsular polysaccharide (P < 0.001) and virulence. In addition, pKV8917 was successfully transferred to Escherichia coli and K. variicola strains via conjugation. Notably, when pKV8917 was transferred to K. variicola, the transconjugants displayed an hmv-like phenotype, and capsule production and virulence increased; these phenotypes were not observed in the E. coli transconjugants. These data suggest that the pKV8917 plasmid carries novel hmv and capsule determinants. Whole-plasmid sequencing and analysis revealed that pKV8917 does not contain rmpADC/rmpA2 genes; thus, an alternative mechanism was searched. The 343-kb plasmid contains an IncFIB backbone and shares a region of ∼150 kb with a 99% identity and 49% coverage with a virulence plasmid from hypervirulent K. variicola and multidrug-resistant K. pneumoniae. The pKV8917-unique region harbors a cellulose biosynthesis cluster (bcs), fructose- and sucrose-specific (fru/scr) phosphotransferase systems, and the transcriptional regulators araC and iclR, respectively, involved in membrane permeability. The hmv-like phenotype has been identified more frequently, and recent evidence supports the existence of rmpADC/rmpA2-independent hmv-like pathways in this bacterial genus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...